

Dave Hartwell
Design Considerations Part 1

www.wmssales.com/webinar-login/:

TracPipe GCounterStrike
Flexible Gas Piping by OmegaFlex.

Welcome to WMS Design Considerations Part 1

What will be covered

Myths of today
Working with existing radiation for Conventional Boilers
Working with existing radiation for Condensing Boilers
Rules of Thumb
Expansion tanks sizing a bit more
Circulator anatomy a deeper understanding
Understanding Glycol
Low Loss Headers

The Myth's of Today

- All Systems must run on 160 °F to 180 °F whether it is 45 °F out or -20°F
- Outdoor reset doesn't work on a Cast Iron Boiler!
- Outdoor reset isn't worth installing on a Condensing Boiler
- A condensing Boiler is 95% efficient if it is running between 160 °F and 180 °F

Connected Load for Radiators

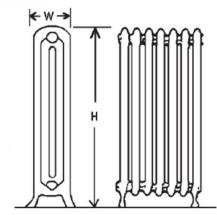
CHAPTER 1 - STEAM

Capacity Basis: 70°F Room Temperature 20°F Temperature Drop												
Sq. Ft. Radiation												
Temp.		215°	200°	190°	180°	170°	160°	150°	140°	130°	120°	110°
BTU		240	210	190	170	150	130	110	90	70	50	30
Pipe Size	мвн											
1/2" 3/4" 1" 1-1/4"	17 39 71 160	71 163 296 667	81 186 338 762	90 205 374 842	100 229 418 914	113 260 473 1067	131 300 546 1231	155 355 646 1455	189 433 789 1778	243 557 1014 2286	340 780 1420 3200	567 1300 2367 5333
1-1/2"	240 450	1000 1875	1143 2143	1263 2368	1412 2647	1600 3000	1846 3462	2182 4091	2667 5000	3429 6429	4800 9000	8000 15,000

Use chart to determine BTU load on radiation converted from steam to H.W.

NOTE: Heat loss of building will determine BTU load on system piping. Divide sq. ft. of installed radiation into heat loss = BTU load per sq. ft.

Count all the sections add them up and multiply them by 150 BTU Per Sq. Ft


CHAPTER 5 INSTALLED RADIATION: DETERMINING HEAT LOAD

SIZING OBSOLETE RADIATION - CAST IRON RADIATORS

The output of a radiator is measured in square feet of radiation. To determine the number of square feet of radiation in a radiator:

- 1. Measure the height of the radiator.
- 2. Count the number of columns in a section.
- 3. Count the number of sections.
- Multiply the total number of sections by the number of square feet per section as shown in the following tables:

Column Type Radiators

Sq. Ft. Radiation per Section									
Height (inches)	4-1/2" W One Column	7-1/2" W Two Column	9" W Three Column	11-1/2" W Four Column	13" W Five Column				
13	_	_	_	_	3				
16	_	_	_	_	3-3/4				
18	_	_	2-1/4	3	4-1/4				
20	1-1/2	2	_	_	5				
22	_		3	4	_				
23	1-2/3	2-1/3	_	_	_				
26	2	2-2/3	3-3/4	5	_				
32	2-1/2	3-1/3	4-1/2	6-1/2					
38	3	4	5	8	_				
45	_	5	6	10	_				

Where does it all begin?

We calculate the heat load at design conditions

In Up-State NY we have roughly 2600 hrs. of heating season.

Design conditions represent roughly 5% of that time roughly 130 hrs.

We need to design around those hrs. to meet the customers expectations of comfort.

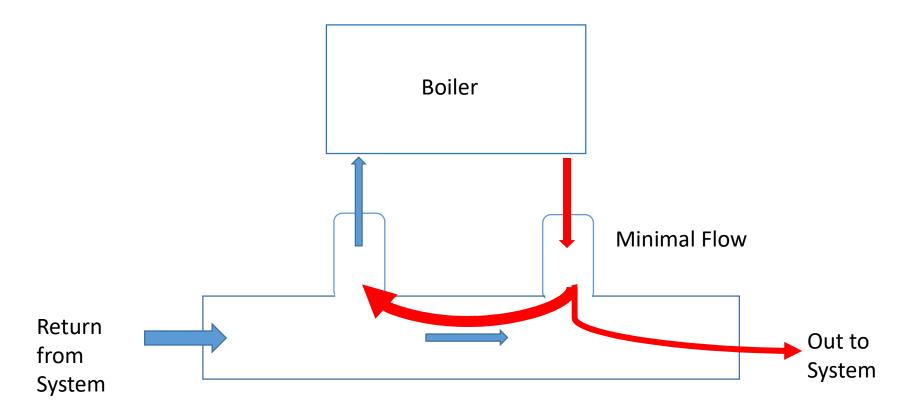
Roughly 80% of that 2600 hrs. we are at or below 50% of design load conditions.

Cast Iron or Steal Boilers have a return water limit of 140 °F, condensing boilers it is more like 40 °F

Does that mean condensing boilers are for every application?

How The Water Moves

Circulators in Parallel Double the GPM at the same Ft of head


Circulators in Series Double the Ft of head at the same GPM

Under Minimal Load Conditions the same amount of water will flow into the Heating source If the flow of the system is reduced due to satisfied Zones more of the water will recirculate back to the heat source and some will go to the system to meet the load.

